## **Taguchi Methods Manager Course** のお勧め



- Taguchi Methodsを導入するキッカケを作りたい
- Taguchi Methodsの概要を短期間に理解したい
- 部下の報告書が理解でき、Taguchi Methodsの 考え方を活用した的確な指示・経営判断をしたい

半日コース = 導入のキッカケ作りと導入判断ができます 1日コース = **Taguchi Methods**の概要が理解できます 2日コース = 部下の仕事の結果に基づいて的確な指示, 経営判断をするのに必要な知識・考え方が 理解できます

## カリキュラムの例

| 品質工学の主な内容一覧 パラメータ設計とは 理想機能 良い設計・技術開発をするには 良い設計をするための実験の仕方 技術レベルの評価方法 直交表の性質 直交表とその使い方 調合誤差因子とは 技術開発と競争 動特性の種類 動特性の種類 動特性の種類 では、と感度Sの求め方 パラメータ設計の手順 補助表と要因効果図 工程平均の推定方法 確認実験による難削材の切削技術開発 < 動特性:事例紹介 > 技術開発の手順 商品開発のためのパラメータ設計 静特性とは パラメータ設計の考え方 静特性のSN比 と感度S 静特性の所方 メータ設計の手順 プリヒートタイマのタイマ時間の最適設計 < 静特性:事例紹介 > 機能窓法 2段階設計法の究極的活用方法 26段階設計法の究極的活用方法 | 内容                               | 2日間 | 1日間 | 半日 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----|-----|----|
| 理想機能<br>良い設計をするための実験の仕方<br>技術レベルの評価方法<br>直交表の性質<br>直交表とその使い方<br>調合誤差因子とは<br>技術開発と競争<br>動特性の種類<br>動特性SN比 と感度Sの求め方<br>パラメータ設計の手順<br>補助表と要因効果図<br>工程平均の推定方法<br>確認実験について<br>転写性による難削材の切削技術開発 < 動特性:事例紹介 ><br>技術開発の手順<br>商品開発のためのパラメータ設計<br>静特性とは<br>パラメータ設計の考え方<br>静特性のSN比 と感度S<br>静特性のSN比 と感度S<br>静特性のSN比<br>静特性のアラメータ設計の手順<br>ブリヒートタイマのタイマ時間の最適設計 < 静特性:事例紹介 ><br>機能窓法<br>2段階設計法の究極的活用方法                                                                                              | 品質工学の主な内容一覧<br>                  |     |     |    |
| 良い設計・技術開発をするには<br>良い設計をするための実験の仕方<br>技術レベルの評価方法<br>直交表の性質<br>直交表とその使い方<br>調合誤差因子とは<br>技術開発と競争<br>動特性の種類<br>動特性の種類<br>動特性SN比 と感度Sの求め方<br>パラメータ設計の手順<br>補助表と要因効果図<br>工程平均の推定方法<br>確認実験について<br>転写性による難削材の切削技術開発 < 動特性:事例紹介 > 技術開発の手順<br>商品開発のためのパラメータ設計<br>静特性とは<br>パラメータ設計の考え方<br>静特性のSN比 と感度S<br>静特性のSN比 と感度S<br>静特性のバラメータ設計の手順<br>プリヒートタイマのタイマ時間の最適設計 < 静特性:事例紹介 > 機能窓法<br>2段階設計法の究極的活用方法                                                                                           | パラメータ設計とは                        |     |     |    |
| 良い設計をするための実験の仕方<br>技術レベルの評価方法<br>直交表の性質<br>直交表とその使い方<br>調合誤差因子とは<br>技術開発と競争<br>動特性の種類<br>動特性SN比 と感度Sの求め方<br>パラメータ設計の手順<br>補助表と要因効果図<br>工程平均の推定方法<br>確認実験について<br>転写性による難削材の切削技術開発 < 動特性:事例紹介 > 技術開発の手順<br>商品開発のためのパラメータ設計<br>静特性とは<br>パラメータ設計の考え方<br>静特性のSN比 と感度S<br>静特性のSN比と感度S<br>静特性ののパラメータ設計の手順<br>プリヒートタイマのタイマ時間の最適設計 < 静特性:事例紹介 > 機能窓法<br>2段階設計法の究極的活用方法                                                                                                                       | 理想機能                             |     |     |    |
| 技術レベルの評価方法<br>直交表の性質<br>直交表とその使い方<br>調合誤差因子とは<br>技術開発と競争<br>動特性の種類<br>動特性 SN比 と感度Sの求め方<br>パラメータ設計の手順<br>補助表と要因効果図<br>工程平均の推定方法<br>確認実験について<br>転写性による難削材の切削技術開発 < 動特性:事例紹介 ><br>技術開発の手順<br>商品開発のためのパラメータ設計<br>静特性のSN比 と感度S<br>静特性のSN比 と感度S<br>静特性のSN比と<br>静特性の実験方法<br>静特性の実験方法<br>静特性のパラメータ設計の手順<br>プリヒートタイマのタイマ時間の最適設計 < 静特性:事例紹介 ><br>機能窓法<br>2段階設計法の究極的活用方法                                                                                                                       | 良い設計・技術開発をするには                   |     |     |    |
| 直交表の性質<br>直交表とその使い方<br>調合誤差因子とは<br>技術開発と競争<br>動特性の種類<br>動特性SN比 と感度Sの求め方<br>パラメータ設計の手順<br>補助表と要因効果図<br>工程平均の推定方法<br>確認実験について<br>転写性による難削材の切削技術開発 < 動特性:事例紹介 > 技術開発の手順<br>商品開発のためのパラメータ設計<br>静特性とは<br>パラメータ設計の考え方<br>静特性のSN比 と感度S<br>静特性のSN比 と感度S<br>静特性の実験方法<br>静特性の実験方法<br>静特性のパラメータ設計の手順<br>プリヒートタイマのタイマ時間の最適設計 < 静特性:事例紹介 > 機能窓法<br>2段階設計法の究極的活用方法                                                                                                                                | 良い設計をするための実験の仕方                  |     |     |    |
| 直交表とその使い方<br>調合誤差因子とは<br>技術開発と競争<br>動特性の種類<br>動特性 SN比 と感度Sの求め方<br>パラメータ設計の手順<br>補助表と要因効果図<br>工程平均の推定方法<br>確認実験について<br>転写性による難削材の切削技術開発 < 動特性:事例紹介 ><br>技術開発の手順<br>商品開発のためのパラメータ設計<br>静特性とは<br>パラメータ設計の考え方<br>静特性のSN比 と感度S<br>静特性のSN比 と感度S<br>静特性のに関係方法<br>静特性のパラメータ設計の手順<br>プリヒートタイマのタイマ時間の最適設計 < 静特性:事例紹介 ><br>機能窓法<br>2段階設計法の究極的活用方法                                                                                                                                              | 技術レベルの評価方法                       |     |     |    |
| 調合誤差因子とは<br>技術開発と競争<br>動特性の種類<br>動特性 SN比 と感度Sの求め方<br>パラメータ設計の手順<br>補助表と要因効果図<br>工程平均の推定方法<br>確認実験について<br>転写性による難削材の切削技術開発 < 動特性:事例紹介 ><br>技術開発の手順<br>商品開発のためのパラメータ設計<br>静特性とは<br>パラメータ設計の考え方<br>静特性のSN比 と感度S<br>静特性のSN比 と感度S<br>静特性のアラメータ設計の手順<br>プリヒートタイマのタイマ時間の最適設計 < 静特性:事例紹介 ><br>機能窓法<br>2段階設計法の究極的活用方法                                                                                                                                                                        | 直交表の性質                           |     |     |    |
| 技術開発と競争 動特性の種類 動特性 SN比 と感度Sの求め方 パラメータ設計の手順 補助表と要因効果図 工程平均の推定方法 確認実験について 転写性による難削材の切削技術開発 < 動特性:事例紹介 > 技術開発の手順 商品開発のためのパラメータ設計 静特性とは パラメータ設計の考え方 静特性のSN比 と感度S 静特性のSN比 と感度S 静特性の実験方法 静特性の実験方法 静特性の実験方法 静特性のパラメータ設計の手順 プリヒートタイマのタイマ時間の最適設計 < 静特性:事例紹介 > 機能窓法 2段階設計法の究極的活用方法                                                                                                                                                                                                            | 直交表とその使い方                        |     |     |    |
| 動特性の種類 動特性 SN比 と感度Sの求め方 パラメータ設計の手順 補助表と要因効果図 工程平均の推定方法 確認実験について 転写性による難削材の切削技術開発 < 動特性:事例紹介 > 技術開発の手順 商品開発のためのパラメータ設計 静特性とは パラメータ設計の考え方 静特性のSN比 と感度S 静特性のSN比 と感度S 静特性の実験方法 静特性の実験方法 静特性の実験方法 静特性の実験方法 静特性のパラメータ設計の手順 プリヒートタイマのタイマ時間の最適設計 < 静特性:事例紹介 > 機能窓法 2段階設計法の究極的活用方法                                                                                                                                                                                                           | 調合誤差因子とは                         |     |     |    |
| 動特性 SN比 と感度Sの求め方 パラメータ設計の手順 補助表と要因効果図 工程平均の推定方法 確認実験について 転写性による難削材の切削技術開発 < 動特性:事例紹介 > 技術開発の手順 商品開発のためのパラメータ設計 静特性とは パラメータ設計の考え方 静特性のSN比 と感度S 静特性のSN比 静特性の実験方法 静特性のパラメータ設計の手順 プリヒートタイマのタイマ時間の最適設計 < 静特性:事例紹介 > 機能窓法 2段階設計法の究極的活用方法                                                                                                                                                                                                                                                  | 技術開発と競争                          |     |     |    |
| パラメータ設計の手順<br>補助表と要因効果図<br>工程平均の推定方法<br>確認実験について<br>転写性による難削材の切削技術開発 < 動特性:事例紹介 ><br>技術開発の手順<br>商品開発のためのパラメータ設計<br>静特性とは<br>パラメータ設計の考え方<br>静特性のSN比 と感度S<br>静特性のSN比 と感度S<br>静特性のパラメータ設計の手順<br>プリヒートタイマのタイマ時間の最適設計 < 静特性:事例紹介 ><br>機能窓法<br>2段階設計法の究極的活用方法                                                                                                                                                                                                                             | 動特性の種類                           |     |     |    |
| 補助表と要因効果図<br>工程平均の推定方法<br>確認実験について<br>転写性による難削材の切削技術開発 < 動特性:事例紹介 ><br>技術開発の手順<br>商品開発のためのパラメータ設計<br>静特性とは<br>パラメータ設計の考え方<br>静特性のSN比 と感度S<br>静特性のSN比<br>静特性の実験方法<br>静特性のパラメータ設計の手順<br>プリヒートタイマのタイマ時間の最適設計 < 静特性:事例紹介 ><br>機能窓法<br>2段階設計法の究極的活用方法                                                                                                                                                                                                                                    | 動特性 SN比 と感度Sの求め方                 |     |     |    |
| 工程平均の推定方法 確認実験について 転写性による難削材の切削技術開発 < 動特性:事例紹介 > 技術開発の手順 商品開発のためのパラメータ設計 静特性とは パラメータ設計の考え方 静特性のSN比 と感度S 静特性のSN比 と感度S 静特性の実験方法 静特性の実験方法 静特性のパラメータ設計の手順 プリヒートタイマのタイマ時間の最適設計 < 静特性:事例紹介 > 機能窓法 2段階設計法の究極的活用方法                                                                                                                                                                                                                                                                          | パラメータ設計の手順                       |     |     |    |
| 確認実験について<br>転写性による難削材の切削技術開発 < 動特性:事例紹介 ><br>技術開発の手順<br>商品開発のためのパラメータ設計<br>静特性とは<br>パラメータ設計の考え方<br>静特性のSN比 と感度S<br>静特性のSN比<br>静特性の実験方法<br>静特性のパラメータ設計の手順<br>プリヒートタイマのタイマ時間の最適設計 < 静特性:事例紹介 ><br>機能窓法<br>2段階設計法の究極的活用方法                                                                                                                                                                                                                                                              | 補助表と要因効果図                        |     |     |    |
| 転写性による難削材の切削技術開発 < 動特性:事例紹介 > 技術開発の手順 商品開発のためのパラメータ設計 静特性とは パラメータ設計の考え方 静特性のSN比 と感度S 静特性のSN比 と感度S 静特性の実験方法 静特性の実験方法 静特性のパラメータ設計の手順 プリヒートタイマのタイマ時間の最適設計 < 静特性:事例紹介 > 機能窓法 2段階設計法の究極的活用方法                                                                                                                                                                                                                                                                                             | 工程平均の推定方法                        |     |     |    |
| 技術開発の手順<br>商品開発のためのパラメータ設計<br>静特性とは<br>パラメータ設計の考え方<br>静特性のSN比 と感度S<br>静特性のSN比<br>静特性の実験方法<br>静特性の実験方法<br>静特性のパラメータ設計の手順<br>プリヒートタイマのタイマ時間の最適設計 < 静特性:事例紹介 ><br>機能窓法<br>2段階設計法の究極的活用方法                                                                                                                                                                                                                                                                                               | 確認実験について                         |     |     |    |
| 商品開発のためのパラメータ設計<br>静特性とは<br>パラメータ設計の考え方<br>静特性のSN比 と感度S<br>静特性のSN比<br>静特性の実験方法<br>静特性のパラメータ設計の手順<br>プリヒートタイマのタイマ時間の最適設計 < 静特性:事例紹介 > 機能窓法<br>2段階設計法の究極的活用方法                                                                                                                                                                                                                                                                                                                         | 転写性による難削材の切削技術開発<動特性:事例紹介>       |     |     |    |
| 静特性とは<br>パラメータ設計の考え方<br>静特性のSN比 と感度S<br>静特性のSN比<br>静特性の実験方法<br>静特性のパラメータ設計の手順<br>プリヒートタイマのタイマ時間の最適設計 < 静特性:事例紹介 ><br>機能窓法<br>2段階設計法の究極的活用方法                                                                                                                                                                                                                                                                                                                                         | 技術開発の手順                          |     |     |    |
| パラメータ設計の考え方<br>静特性のSN比 と感度S<br>静特性のSN比<br>静特性の実験方法<br>静特性のパラメータ設計の手順<br>プリヒートタイマのタイマ時間の最適設計 < 静特性:事例紹介 ><br>機能窓法<br>2段階設計法の究極的活用方法                                                                                                                                                                                                                                                                                                                                                  | 商品開発のためのパラメータ設計                  |     |     |    |
| 静特性のSN比 と感度S<br>静特性のSN比<br>静特性の実験方法<br>静特性のパラメータ設計の手順<br>プリヒートタイマのタイマ時間の最適設計 < 静特性:事例紹介 ><br>機能窓法<br>2段階設計法の究極的活用方法                                                                                                                                                                                                                                                                                                                                                                 | 静特性とは                            |     |     |    |
| 静特性のSN比<br>静特性の実験方法<br>静特性のパラメータ設計の手順<br>プリヒートタイマのタイマ時間の最適設計 < 静特性:事例紹介 ><br>機能窓法<br>2段階設計法の究極的活用方法                                                                                                                                                                                                                                                                                                                                                                                 | パラメータ設計の考え方                      |     |     |    |
| 静特性の実験方法<br>静特性のパラメータ設計の手順<br>プリヒートタイマのタイマ時間の最適設計 < 静特性:事例紹介 ><br>機能窓法<br>2段階設計法の究極的活用方法                                                                                                                                                                                                                                                                                                                                                                                            | 静特性のSN比 と感度S                     |     |     |    |
| 静特性のパラメータ設計の手順<br>プリヒートタイマのタイマ時間の最適設計 < 静特性:事例紹介 ><br>機能窓法<br>2段階設計法の究極的活用方法                                                                                                                                                                                                                                                                                                                                                                                                        | 静特性のSN比                          |     |     |    |
| プリヒートタイマのタイマ時間の最適設計 < 静特性:事例紹介 > 機能窓法<br>2段階設計法の究極的活用方法                                                                                                                                                                                                                                                                                                                                                                                                                             | 静特性の実験方法                         |     |     |    |
| 機能窓法<br>2段階設計法の究極的活用方法                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 静特性のパラメータ設計の手順                   |     |     |    |
| 2段階設計法の究極的活用方法                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | プリヒートタイマのタイマ時間の最適設計 < 静特性:事例紹介 > |     |     |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |     |     |    |
| 2段階級計法の突極的活用方法 実際の進め方                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2段階設計法の究極的活用方法                   |     |     |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2段階設計法の究極的活用方法 実際の進め方            |     |     |    |

ぜひ一度ご相談ください. 貴社の目的に応じて,最適なカリキュラムで実施させて頂きます

## ITEQ International

Institute of Technology, Engineering and Quality 有限会社アイテックインターナショナル

連絡先

〒462-0844 名古屋市北区清水3丁目8番5号 URL http://www.iteq.co.jp/ 第1事業部 TEL:052-917-0711 FAX:052-917-0712